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Several times in recent years, students have been asked to use limits – or more broadly, 

the definition of continuity – to establish that a function was or was not continuous at a 

given value of x or t. Students appear to have a highly intuitive sense of how to answer 

that question. Still, many capable students neglect to include all of the essential 

elements in this process, sometimes perhaps because it appears too transparently true 

to provide more detail, sometimes perhaps because they have not remembered that 

there are ordinarily three elements to establishing continuity.  

Most often, when the problem is posed in a piecewise function, we expect the student 

to do these three things: 

a) Compute the left and right hand limits 

b) Compute the function value 

c) Validate that the result from (a) equals the result from (b) 

 

Example 1:  

 

Let f be a function defined by: 
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Show that f is continuous at 2x = . 
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Although motion problems have been a staple on the AP Calculus exam for decades, 

there are some new trends that have shown up in recent years, mostly having to do 

with the availability of handheld calculators and a renewed emphasis on justifying 

answers. Below are some of the key issues that have been tested in recent years at least 

once and in most cases several times: 
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This question comes from the physics side of the calculus curriculum and, 

although it is fairly simple to answer yes or no, a justification is required. The 

justification rests on recognizing something about the sign of the velocity and 

acceleration, namely, that when velocity and acceleration are like signed, 

speed is increasing and, when they are unlike signed, speed is decreasing. 

Students generally find it easy to visualize that a particle moving right with 

positive acceleration has increasing speed. It is less intuitive but nevertheless 

accessible for students to imagine that a particle which is moving left with 

negative acceleration has increasing speed. The example of a falling object 

does this quite well. Since this question often is only worth one point, the 

point requires both an answer and a justification. Typically, the question will 

be linked to evaluating acceleration at a point, a calculation that students can 

often do in the calculator portion of the exam. The stem for this type of 

question might look something like the following example:�

� �

Example 2:  

 

A particle moves in a straight line with velocity given by the function

3( ) 1  0tv t t e for t−= − ≥ . Find the acceleration at time t = 4. Is the speed of the particle 

increasing or decreasing at t = 4? 

 

 

 

 

 

 

 





'( )( ) ( )
b

a

f x dxf b f a= + ∫ . It is now a simple matter to transpose this to the 

motion situation, giving us a very valuable relationship in calculus: 

Let v(t) be the velocity of a particle moving in a straight line over an interval of 

time [ , ]t a b∈ such that, at time t = a, its position is given by x(a) = k. Then its 

position at time t = b is given by:  ( ) ( )
b

a

x b k v t dt= + ∫
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Computing final position from an initial position and a velocity is a specific example of a 

generalized result of the FTC, namely that any rate of change can be integrated on an 

interval to find the amount of change on that interval. In motion problems, the 

paradigm is very well understood by students because they deal with motion all the 

time. But when the rate of change provided is not so familiar – heating or cooling water, 

people entering an auditorium, birds passing during
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For a long time on the AP Calculus exam, it was understood that values presented in a 

table would have been given over equal subintervals. Not only is that not the rule; in 

recent years, equal subintervals would be the exception. 

As a rule, table values are presented when a Riemann sum or a Trapezoidal sum is 

required to estimate the value of a definite integral. Many students become 

accustomed to the formulas that are presented for these sums when there are no 

decisions about the size of intervals. However, remembering the formula by rote can 

lead students to forget that the individual terms of the sum are rectangles or trapezoids 

with their own dimensions. Students should have these formulas well in hand: 

  

Let '( )f x be continuous on an interval 
0

[ , ]nx x  divided into n subintervals by the values 
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, , , , nx x x x… . The left and right Riemann sum estimates for 

0
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Left Riemann Sum: 
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Right Riemann Sum: 
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Trapezoidal Sum with Unequal Subintervals: 

Let '( )f x be continuous on an interval 
0

[ , ]nx x  divided into n subintervals by the values  

0 1 2
, , , , nx x x x… . The trapezoidal sum estimate for 

0
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nx
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f x dx∫ is: 
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Note how the familiar pattern of coefficients 1,2,2,…,1 is no longer evident, since each 

average is taken over a possibly different sized interval. 

 

 

 

 

 



Example 6:  

 

Carmen entered a bicycle race, and her non-decreasing velocity, in meters per second, 

was registered at various times during the interval 0 12t≤ ≤ , as shown in the table 
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Although there are not a great many direct applications for functions defined by 

integrals, questions involving this stem hold a lot of potential for asking a variety of 

concept questions. Thus, students may expect to see them for some time to come. 

There are a few key considerations when working with a function that has been defined 

as the integral of a given function, usually one whose graph is provided. 

 

a) If given ( ) ( )
x

a

F x f t dt= ∫ , it is helpful to think of the pictured f(x) in the same way 

we consider the derivative of a function as an indicator of the behavior of the 

function. 

b) There is almost always a question that asks for one or more of: ( ); ( ); '( )F k f k f k . 

This is a prompt for three separate realizations: 

a) Computing a function value by computing area and direction; 

b) Computing a function value by reading it from a graph; and 

c) 



 

Example 7:  

 

The continuous function f
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The topic of differential equations is an attractive one because students are able to 

work with them using multiple representations. We can: 

a) Separate variables to solve them analytically. 

b) Use slope fields to show their direction graphically. 

c) Use Euler’s Method to approximate them numerically (BC only). 

Few other topics offer such a variety of approaches. Here is more: 

 

a) Students who enter the AP Calculus exam without a thorough grounding in how to 

solve differential equations using separation of variables stand a very good chance of 

forfeiting 5 or 6 points on the free response examination. Only twice since 2003 has 

there not been a differential equation solution question on free response, and in 

those two years (2007 and 2009) there was likely more than one multiple choice 

question touching on the topic. When solving a differential equation, it is good to 

remember these helpful tips: 

i. A good separation is essential, and any attempt to solve without separating will 

earn no points. 

ii. After separation, the antiderivative point(s) come quickly, as does the constant of 

integration. Very often, a late constant of integration - the "constant of 

desperation” – leads to the loss of the last three points in the problem. A timely 



iv. If the differential equation is provided for the slope field segments, look for the 

zeroes of the differential equation to give important clues. For instance, if we 

start with ( 1)
dy

y x
dx
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f is increasing on an interval [m, n] if, for any two values a and b in the interval, 
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Solution 1: 
2
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  Also, (2) 1f =  

  So, 
2
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  And f is continuous at  2x =  

 

Solution 2: 

 

(4) .172 0

(4) '(4) .293 0

v
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The speed is decreasing at time  4t = since v and a  have opposite signs. 

 

Solution 3:  

 

A. The distance travelled is simply the value of the definite integral: 

   

 

2

0

( 2)sin( )  



 

Solution 5:  

 

A. 

                       

10

0

( ) 12.970 thousand gallonsF t dt =∫
 

B.

 

              

5

0

( )F t dt∫  represents the total amount of water that flowed out of the pipe from 

 t = 0 to t = 5 minutes, measured in thousands of gallons. 

C. 
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  Solution 10:  

 

A. f has a relative maximum at x = 1 and x = 2 because '( )f x  

   changes sign from positive to negative. 

B. f has a relative minimum at x = .3 and x = 2.8 because '( )f x  changes sing    

from negative to positive. 

C. f has a point of inflection at 1, .3, 2 and 2.8x = −  because f”(x) changes sign 

at those values. 
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